国产精品亚洲精品日韩动图,国产又黄,青青青在线视频免费观看,日韩精品一区二区蜜桃

  • <td id="cz1jh"></td>

    <menuitem id="cz1jh"></menuitem>
  • <small id="cz1jh"></small>

      1. 育路教育網(wǎng),權(quán)威招生服務平臺
        新東方在線

        回顧——2009年考研數(shù)學大綱數(shù)一之線性代數(shù)

        來源:來源于網(wǎng)絡 時間:2009-07-17 08:38:41
          一、行列式 
          考試內(nèi)容
          行列式的概念和基本性質(zhì)  行列式按行(列)展開定理
          考試要求
          1。了解行列式的概念,掌握行列式的性質(zhì)。
          2。會應用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。
          二、矩陣
          考試內(nèi)容
          矩陣的概念  矩陣的線性運算  矩陣的乘法  方陣的冪  方陣乘積的行列式  矩陣的轉(zhuǎn)置  逆矩陣的概念和性質(zhì)  矩陣可逆的充分必要條件  伴隨矩陣  矩陣的初等變換  初等矩陣  矩陣的秩  矩陣的等價  分塊矩陣及其運算
          考試要求
          1。理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。
          2. 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。
          3。理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。
          4。理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。
          5。了解分塊矩陣及其運算。
          三、向量
          考試內(nèi)容
          向量的概念  向量的線性組合和線性表示  向量組的線性相關與線性無關  向量組的極大線性無關組  等價向量組  向量組的秩  向量組的秩與矩陣的秩之間的關系  向量空間及其相關概念  維向量空間的基變換和坐標變換  過渡矩陣  向量的內(nèi)積  線性無關向量組的正交規(guī)范化方法  規(guī)范正交基  正交矩陣及其性質(zhì)。
          考試要求
          1. 理解維向量、向量的線性組合與線性表示的概念。
          2。理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質(zhì)及判別法。
          3。理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。
          4。理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系。
          5。了解維向量空間、子空間、基底、維數(shù)、坐標等概念。
          6。了解基變換和坐標變換公式,會求過渡矩陣。
          7. 了解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法。
          8. 了解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì)。
          四、線性方程組
          考試內(nèi)容
          線性方程組的克萊姆(Cramer)法則  齊次線性方程組有非零解的充分必要條件  非齊次線性方程組有解的充分必要條件  線性方程組解的性質(zhì)和解的結(jié)構(gòu)  齊次線性方程組的基礎解系和通解  解空間  非齊次線性方程組的通解。
          考試要求
          1。會用克萊姆法則。
          2. 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。
          3. 理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法。
          4. 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。
          5。掌握用初等行變換求解線性方程組的方法。
          五、矩陣的特征值和特征向量
          考試內(nèi)容
          矩陣的特征值和特征向量的概念、性質(zhì)  相似變換、相似矩陣的概念及性質(zhì)  矩陣可相似對角化的充分必要條件及相似對角矩陣  實對稱矩陣的特征值、特征向量及其相似對角矩陣。
          考試要求
          1. 理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量。
          2. 理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
          3. 掌握實對稱矩陣的特征值和特征向量的性質(zhì)。
          六、二次型
          考試內(nèi)容
          二次型及其矩陣表示  合同變換與合同矩陣  二次型的秩  慣性定理  二次型的標準形和規(guī)范形  用正交變換和配方法化二次型為標準形  二次型及其矩陣的正定性
          考試要求
          1。掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換和合同矩陣的概念,了解二次型的標準形、規(guī)范形的概念以及慣性定理。
          2。掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形。
          3。理解正定二次型、正定矩陣的概念,并掌握其判別法! 
        結(jié)束

        特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責任;

        ②部分稿件來源于網(wǎng)絡,如有侵權(quán),請聯(lián)系我們溝通解決。

        有用

        25人覺得有用

        閱讀全文

        2019考研VIP資料免費領取

        【隱私保障】

        育路為您提供專業(yè)解答

        相關文章推薦

        15

        2009.07

        2009年考研數(shù)學大綱數(shù)一之高等數(shù)學

         一、函數(shù)、極限、連續(xù)
          考試內(nèi)容
          函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和......

        14

        2009.07

        廈大2009年招港澳臺研究生錄取臺生占88%

          近日,廈門大學2009年招收港澳臺研究生名單公布。名單顯示,臺灣學生比例占到了88%,16名碩士生中......

        14

        2009.07

        2009年8405名中科院研究生獲授學位

         7月10日上午,中科院研究生院在其北京玉泉路校區(qū)舉行2009年學位授予儀式。今年,該校授予的博士學位......

        06

        2009.07

        2009年山東大學考研錄取通知書發(fā)放通知

          2009級碩士研究生錄取通知書將于近日分發(fā)到錄取學院(所、中心),由錄取學院(所、中心)再發(fā)放......

        02

        2009.07

        考研數(shù)學大綱解析很重要 必須研讀

          對于考研數(shù)學輔導書的選擇,一直都是考生們比較頭疼的問題,如今市面上種類繁多的輔導書也讓考生們......

        01

        2009.07

        2009年考研沖刺最后十天心理調(diào)節(jié)

        考研決戰(zhàn)在即,百萬考研學子的情緒漸漸變得越來越復雜了。準備充分的同學,滿懷信心,靜靜等待著考......

        您可能感興趣
        為什么要報考研輔導班? 如何選擇考研輔導班? 考研輔導班哪個好? 哪些北京考研輔導班靠譜? 2019考研輔導班大全