如何提升高考數(shù)學(xué)解題能力(2)
其次,我們要有一套訓(xùn)練有素的數(shù)學(xué)復(fù)習(xí)標(biāo)準(zhǔn)步驟,下面就讓我們循著通往數(shù)學(xué)滿分的路,看看如何駕馭自己的思想走上數(shù)學(xué)高分的捷徑。
一、解題思路的理解和來源
平時大家評論一個孩子“聰明”或者“不聰明”的依據(jù)是看這個孩子對某件事或很多事得反應(yīng)以及有沒有他自己的看法。如一個“聰明”的孩子,往往反應(yīng)快、思路清楚,有自己的主見。那么我們認(rèn)為“反應(yīng)快、思路清楚、有主見”是聰明的前提。學(xué)習(xí)成績好的同學(xué),反應(yīng)快、思路清楚、有主見就是他們的必備條件。
那么解題也如此,必須反應(yīng)快、思路清楚、有主見。同一道題,不同的學(xué)生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論是推導(dǎo)、還是硬性套用、憑借經(jīng)驗(yàn)做題,都是思路的一種。有的同學(xué)由開始思路不清漸漸轉(zhuǎn)變?yōu)榍宄,有的同學(xué)根本沒有思路,這就形成了做題的上的差距。
如果能教會給學(xué)生,在處理數(shù)學(xué)問題上,第一時間最短的思考路徑,并且清晰無比,這樣,每個學(xué)生都是“聰明的孩子”,在做題上就能攻無不克戰(zhàn)無不勝。
解題思路的來源就是對題的看法,也就是第一出發(fā)點(diǎn)在哪。
二、如何在短期內(nèi)訓(xùn)練解題能力
數(shù)學(xué)解題思想其實(shí)只要掌握一種即可,即必要性思維。這是解答數(shù)學(xué)試題的萬用法門,也是最直接、最快捷的答題思想。什么是必要性思維?必要性思維就是通過所求結(jié)論或者某一限定條件尋求前提的思想。幾乎所有數(shù)學(xué)命題都可以用這一思想進(jìn)行破解。這里我用視頻來舉兩個簡單的例子,說明數(shù)學(xué)必要性思維是如何應(yīng)用的。
縱觀近幾年高考數(shù)學(xué)試題,可以看出試題加強(qiáng)了對知識點(diǎn)靈活應(yīng)用的考察。這就對考生的思維能力要求大大加強(qiáng)。如何才能提升思維能力,很多考生便依靠題海戰(zhàn)術(shù),寄希望多做題來應(yīng)對多變的考題,然而憑借題海戰(zhàn)術(shù)的功底仍然難以獲得科學(xué)的思維方式,以至收效甚微。最主要的原因就是解題思路隨意造成的,并非所謂“不夠用功”等原因。由于思維能力的原因,考生在解答高考題時形成一定的障礙。主要表現(xiàn)在兩個方面,一是無法找到解題的切入點(diǎn),二是雖然找到解題的突破口,但做這做著就走不下去了。如何解決這兩大障礙呢?本章將介紹行之有效的方法,使考生獲得有益的啟示。
三.尋找解題途徑的基本方法——從求解(證)入手
遇到有一定難度的考題我們會發(fā)現(xiàn)出題者設(shè)置了種種障礙。從已知出發(fā),岔路眾多,順推下去越做越復(fù)雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須要做什么,找到“需知”后,將“需知”作為新的問題,直到與“已知“所能獲得的“可知”相溝通,將問題解決。事實(shí)上,在不等式證明中采用的“分析法”就是這種思維的充分體現(xiàn),我們將這種思維稱為“逆向思維”——目標(biāo)前提性思維。
四.完成解題過程的關(guān)鍵——數(shù)學(xué)式子變形
解答高考數(shù)學(xué)試題遇到的第二障礙就是數(shù)學(xué)式子變形。一道數(shù)學(xué)綜合題,要想完成從已知到結(jié)論的過程,必須經(jīng)過大量的數(shù)學(xué)式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經(jīng)歷,在解一道復(fù)雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,后悔莫及,埋怨自己怎么糊涂到?jīng)]有把式子再這么變一下呢?
其實(shí)數(shù)學(xué)解題的每一步推理和運(yùn)算,實(shí)質(zhì)都是轉(zhuǎn)換(變形).但是,轉(zhuǎn)換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已知,也就是創(chuàng)造條件向有利于解題的方向轉(zhuǎn)化.還必須注意的是,一切轉(zhuǎn)換必須是等價的,否則解答將出現(xiàn)錯誤。解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規(guī)律性的東西需要總結(jié)。在后面的幾章中我們列舉的一些思維定勢,就是在數(shù)學(xué)思想指導(dǎo)下總結(jié)出來的。在解答高考題中時刻都在進(jìn)行數(shù)學(xué)變形由復(fù)雜到簡單,這也就是轉(zhuǎn)化,數(shù)學(xué)式子變形的思維方式:時刻關(guān)注所求與已知的差異。
(責(zé)任編輯:盧雁明)
分享“如何提升高考數(shù)學(xué)解題能力”到:
- 2018高考高考數(shù)學(xué)得分技巧
- 高三文科生如何學(xué)習(xí)數(shù)學(xué)?
- 2018年高考幾何題解題必備方法
- 高考數(shù)學(xué)知識點(diǎn):對數(shù)函數(shù)的圖象與性質(zhì)
- 高考數(shù)學(xué)知識點(diǎn):函數(shù)的連續(xù)性
- 高考數(shù)學(xué)知識點(diǎn):圓周角定理
- 專家告訴你高考前如何高效復(fù)習(xí)數(shù)學(xué)學(xué)科
- 高考數(shù)學(xué)一輪備考算法初步知識點(diǎn)
- 高考數(shù)學(xué)立體幾何易錯易混知識點(diǎn)
- 文科高考數(shù)學(xué)必背知識點(diǎn)--公式