[高二數(shù)學(xué)學(xué)習(xí)]三角函數(shù)求解策略
見“給角求值”問題,運用“新興”誘導(dǎo)公式
一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);
2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).
二、見“sinα±cosα”問題,運用三角“八卦圖”
1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);
2.sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);
4.|sinα|<|cosα|óα的終邊在ⅰ、ⅳ區(qū)域內(nèi).
三、見“知1求5”問題,造rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。
四、“見齊思弦”=>“化弦為一”已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.五、見“正弦值或角的平方差”形式,啟用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.
(責(zé)任編輯:彭海芝)
分享“[高二數(shù)學(xué)學(xué)習(xí)]三角函數(shù)求解策略”到:
- 高二數(shù)學(xué) 知識點的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評
- 數(shù)學(xué)高二知識點:簡單隨機(jī)抽樣