国产精品亚洲精品日韩动图,国产又黄,青青青在线视频免费观看,日韩精品一区二区蜜桃

  • <td id="cz1jh"></td>

    <menuitem id="cz1jh"></menuitem>
  • <small id="cz1jh"></small>

      1. 高中高二立體幾何初步數(shù)學(xué)知識點

        2017-02-06 18:21:19 來源:精品學(xué)習(xí)網(wǎng)

           高中立體幾何初步數(shù)學(xué)知識點

          1、柱、錐、臺、球的結(jié)構(gòu)特征

          (1)棱柱:

          幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

          (3)棱臺:

          立體幾何初步數(shù)學(xué)知識點幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點

          (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

          (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

          幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

          (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

          幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

          (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

          俯視圖(從上向下)

          注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

          4、柱體、錐體、臺體的表面積與體積

          (1)幾何體的表面積為幾何體各個面的面積的和。

          (2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)

          (3)柱體、錐體、臺體的體積公式

          (4)球體的表面積和體積公式:V = ; S =

          5、空間點、直線、平面的位置關(guān)系

          公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

          應(yīng)用: 判斷直線是否在平面內(nèi)

          用符號語言表示公理1:

          公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

          符號:平面α和β相交,交線是a,記作α∩β=a。

          符號語言:

          公理2的作用:

         、偎桥卸▋蓚平面相交的方法。

         、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。

          ③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

          公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

          推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

          公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù) ②它是證明平面重合的依據(jù)

          公理4:平行于同一條直線的兩條直線互相平行

          空間直線與直線之間的位置關(guān)系

         、 異面直線定義:不同在任何一個平面內(nèi)的兩條直線

         、 異面直線性質(zhì):既不平行,又不相交。

          ③ 異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

         、 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

          求異面直線所成角步驟:

          A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角

          (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

          (8)空間直線與平面之間的位置關(guān)系

          直線在平面內(nèi)——有無數(shù)個公共點.

          三種位置關(guān)系的符號表示:a α a∩α=A a‖α

          (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

          相交——有一條公共直線。α∩β=b

          6、空間中的平行問題

          (1)直線與平面平行的判定及其性質(zhì)

          線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

          線線平行 線面平行

          線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

          那么這條直線和交線平行。線面平行 線線平行

          (2)平面與平面平行的判定及其性質(zhì)

          兩個平面平行的判定定理

          (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

          (線面平行→面面平行),

          (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

          (線線平行→面面平行),

          (3)垂直于同一條直線的兩個平面平行,

          兩個平面平行的性質(zhì)定理

          (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

          (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

          7、空間中的垂直問題

          (1)線線、面面、線面垂直的定義

         、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

         、诰面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

         、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

          (2)垂直關(guān)系的判定和性質(zhì)定理

          ①線面垂直判定定理和性質(zhì)定理

          判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

          性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

         、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

          判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

          性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

          8、空間角問題

          (1)直線與直線所成的角

         、賰善叫兄本所成的角:規(guī)定為 。

          ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

         、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

          (2)直線和平面所成的角

         、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。 ②平面的垂線與平面所成的角:規(guī)定為 。

         、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

          求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

          在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

          在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

          (3)二面角和二面角的平面角

          ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

          ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

          ③直二面角:平面角是直角的二面角叫直二面角。

          兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

         、芮蠖娼堑姆椒

          定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

          垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

          (責(zé)任編輯:彭海芝)

        分享“高中高二立體幾何初步數(shù)學(xué)知識點”到:

        58.4K

        網(wǎng)站地圖

        關(guān)注高考招生官微
        獲取更多招生信息
        高校招生微信